
F R O N T M A T T E R

Leptons and quarks in a discrete spacetime

Franklin Potter„«

Sciencegems.com, 8642 Marvale Drive, Huntington Beach, CA USA
February 15, 2005

At  the  Planck  scale  I  combine  a  finite  subgroup  of  SO(3,1)  operating  in  4-dimensional  discrete
spacetime  with  a  finite  subgroup  of  the  Standard  Model  gauge  group  SU(2)L  x  U(1)Y  x  SU(3)C
acting in 4-dimensional discrete internal symmetry space. The unique combination is a specific finite
subgroup of  SO(9,1)  in 10-D discrete  spacetime related to  E8  x E8 .  The evidence for  discreteness
would be the appearance of a fourth quark family with its b’ quark at about 80-100 GeV decaying to
a b quark plus a photon at the Large Hadron Collider. 

PACS numbers: PACS
B O D Y

I. Introduction

The successful Standard Model (SM) of leptons and quarks describes their electromagnetic, weak and color interactions
in terms of symmetries dictated by the SU(2)L  x U(1)Y  x SU(3)C  continuous gauge group. The fundamental particles and
antiparticles are defined by their electroweak isospin states in two distinct but gauge equivalent unitary planes in an internal
symmetry space ‘attached’  at  a  spacetime point.  Consequently,  particle states  and antiparticle states have opposite-signed
physical  properties  but their  masses  are  the  same sign,  in  agreement  with empirical  data,  i.e.,  there are  no  negative  mass
fundamental particles. 

The gravitational interaction is not included explicitly in the SM. In an earlier paper (Potter, 1994) I discussed how the
SM  continuous  gauge  group  is  essentially  acting  in  the  unitary  planes  like  a  “cover  group”  for  the  underlying  discrete
symmetries of its specific finite binary rotational subgroups, thereby suggesting that the internal symmetry space is discrete
instead of  being continuous. As expected, the mathematical properties of these finite subgroups of  the SM were shown to
dictate  the  same  physical  properties  of  the  leptons  and  quarks  as  achieved  by  the  SM  .  In  addition,  the  finite  rotational
subgroup approach determined their mass ratios correctly from the j-invariant related to their elliptic modular functions.

Therefore,  since  mass/energy  is  the  source  of  the  gravitational  interaction,  there  exists  the  possibility  that  the  gravita-
tional  interaction  ultimately  arises  from  these  discrete  symmetries  already  within  the  SM.  Then  not  only  the  internal
symmetry  space  might  be  discrete  but  also  spacetime  itself  may  be  discrete  inherently,  since  gravitation  determines  the
spacetime  metric.  Spacetime  would  appear  to  be  continuous  only  at  the  low  resolution  scales  of  experimental  apparatus
such as the present particle colliders.

In  this  paper  I  assume  that  my previous  assignments  of  the  finite  binary  rotational  subgroups  to  the  lepton  and  quark
families of  the SM gauge group will  be corroborated at  the new Large Hadron Collider within a  few years.  So I  proceed
with the  next logical  step, to mathematically combine a discrete  internal symmetry space with a  discrete spacetime at the
Planck  scale  of  about  10-35  meters.  The  mathematical  result  is  a  surprise  that  unifies  the  fundamental  interactions  in  a
unique way that relates approximately to E8  x E8  in superstring theory (also called M-theory). 



II. Dimensions of the internal symmetry space?  

 I take the internal symmetry space of the SM to be discrete, but we need to know how many dimensions there are. Do
we need two complex spatial dimensions for a unitary plane as suggested by SU(2), or do we need three as suggested by the
SU(3) symmetry of the color interaction, or do we need more? 

The lepton and quark particle states  are defined as  electroweak isospin states by the electroweak part  of the SM gauge
group, particles in the normal unitary plane C2  and antiparticles in the conjugate unitary plane C’2 . Photon, W+ , W- , and
Z0  interactions of  the electroweak SU(2)L  x U(1)Y  gauge group operationing in the unitary plane rotate the two particle
states (i.e., the two complex basis spinors in the unitary plane) into one another. These electroweak rotations can be consid-
ered to  occur also in an  equivalent  4-dimensional real  euclidean space R4  and in an  equivalent  quaternion space Q,  both
these spaces being useful for a better geometrical understanding of the SM.

The quark  states  are  defined  also  by  the  color  symmetries  of  SU(3)C,  i.e.,  each  quark  comes  in  one  of  three  possible
colors,  red  R,  green  G,  or  blue  B,  while  the  lepton  states  have  no  color  charge.  Normally,  one  would  consider  SU(3)C
operating in a space of three complex dimensions, or its equivalent six real dimensions. In fact, SU(3)C can operate success-
fully in the smaller unitary plane C2 ,  because each SU(3) operation can be written as  the product of  three specific SU(2)
operations  (Rowe,  Sanders  and  de  Guise,  1999).  An  alternative  geometrical  explanation  has  the  gluon  operations  of  the
color interaction rotate one color state into another in a 4-dimensional real space, as discussed in my 1994 article. Briefly,
real  4-dimensional  space  R4  has  orthogonal  coordinates  (w,x,y,z),  and  its  4-D  rotations  occur  simultaneously  in  two
orthogonal planes. There being only three distinct pairs of orthogonal planes, [wx, yz], [xy, zw], and [yw, xz], each color R,
G,  or  B  is  assigned  to  a  specific  pair,  thereby  making  color  an  exact  geometrical  symmetry.  Consequently,  the  gluon
operations  of  SU(3)C  occur  in  the  4-D  real  space  R4  that  is  equivalent  to  the  unitary  plane.  Detailed  matrix  operations
confirm that hadrons with quark-antiquark pairs, three quarks, or three antiquarks, are colorless combinations.

 The  internal  symmetry  space  is  a  discrete  4-dimensional  real  space  because  this  space  allows the  SM gauge group  to
operate completely. One does not need a larger 6-dimensional real space for its internal symmetry space.

III. Dimensions of spacetime?

 I take physical spacetime to be 4-dimensional with one time dimension. Spacetime is normally considered to be continu-
ous  and  4-dimensional,  with  three  spatial  dimensions  and one  time  dimension.  However,  in  the  last  two  decades  several
approaches toward unifying all fundamental interactions have considered additional mathematical spatial dimensions and/or
more time dimensions. For example, superstring theory (Schwarz, 2003) at the high energy regime, i.e., at the Planck scale,
proposes 10 or 11 spacetime dimensions in its present mathematical formulation, including the one time dimension. These
extra spatial dimensions may correspond to six or seven dimensions ‘curled up’ into an internal symmetry space for defin-
ing  fundamental  particle  states  at  each  spacetime  point  in  order  to  accommodate  the  SM in  the  low  energy  regime.  The
actual physical spacetime itself may still have three spatial dimensions and one time dimension. 

There  remains  the  question  of  whether  spacetime  is  continuous  or  discrete.  If  the  internal  symmetry  space  is  indeed
discrete,  then  perhaps spacetime itself  might  be  discrete  also.  Researchers  in loop  quantum gravity (Urrutia,  2004)  at  the
Planck scale divide spacetime into discrete subunits, considering a discrete 4-D spacetime with its discrete Lorentz transfor-
mations to be a viable approach. I therefore take 4-D discrete spacetime as a starting point. 

The goal now is to combine the finite subgroups of the gauge group of  the SM and the finite group of discrete Lorentz
boosts and discrete spacetime rotations into one unified group. All four known fundamental interactions would be unified.
Although  many  unification  schemes  for  the  fundamental  interactions  have  been  attempted  over  the  past  three  decades
utilizing  continuous  groups,  I  believe  this  attempt  is  the  first  one  that  combines  finite  groups.  Mathematically,  the  result
must be unique, otherwise different fundamental laws could exist in different parts of the universe.
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IV. Discrete internal symmetry space

The  most  important  finite  symmetry  groups  in  the  4-D  discrete  internal  symmetry  space  are  the  3-D binary  rotational
subgroups [3,3,2], [4,3,2], and [5,3,2] of the SM gauge group because they contain both 3-D and 4-D discrete rotations and
inversions.  These are the three subgroups of the SM that I proposed for defining the three lepton families and the lepton
states.  Being subgroups of SU(2)L  x U(1)Y, they have group operations represented by 2 x 2 unitary matrices or, equiva-
lently, by unit quaternions. Quaternions provide the more obvious geometrical connection (Coxeter, 1974), because quater-
nions perform the dual role of being a group operation and of being a vector in R3  and in R4 . One can think visually about
the 3-D group rotations and inversions for  these three subgroups as quaternions  operating on the Platonic solids, with the
same quaternions also defining the vertices of regular geometrical objects in R4 .  

The two mathematical entities, the unit quaternion q and the SU(2) matrix,  are related by   

(1)q = w + x i + y j + z kóK w + i z x + i y
-x + i y w - i z O

where the i, j, and k are unit imaginaries, their coefficients are real, and w2  + x2  + y2  + z2  = 1. The conjugate quaternion
q’  = w - x i - y j - z k and its corresponding matrix would represent the same group operation in the conjugate unitary plane
for  the  antiparticles.  Recall  that  Clifford  algebra  dictates  that  only  R4 ,  R8 ,  and  other  real  spaces  Rn  with  dimensions
divisible by four have two equivalent conjugate spaces, the specific mathematical property that accommodates both particle
states and antiparticle states. The group U(1)Y  for weak hypercharge Y then reduces the symmetry to being gauge equiva-
lent so that particles and antiparticles have the same positive mass.

One  might  think  that  we  need  to  analyze  each  of  the  three  binary  rotational  subgroups  separately  when  the  discrete
internal  symmetry  space  is  combined  with  discrete  spacetime.  Fortunately,  the  largest  binary  rotational  group  [5,3,2]  of
icosahedral symmetries can represent the two other groups, and a discussion of its 120 quaternion operations is all inclusive
mathematically. The elements of this icosahedral group, rotations and inversions, can be represented by the appropriate unit
quaternions in several ways.   

The connection between the 3-D and 4-D spaces is realized when one  equates the  120 group operations  on the regular
icosahedron {3, 5} to the vectors for the 120 vertices of the 600-cell hypericosahedron {3, 3, 5} in 4-D space in a particular
way. These operations of the binary icosahedral group and the vertices of the hypericosahedron are defined by 120 special
unit quaternions qi  known as isosians (Conway and Sloane, 1998), which have the mathematical form  

(2)qi = Ie1 + e2  
è!!!5 M + Ie3 + e4  

è!!!5 M i + Ie5 + e6  
è!!!5 M j + Ie7 + e8  

è!!!5 M k,

where the eight ej are special rational numbers. Specifically, the 120 icosians are obtained by permutations of

(3)H1, 0, 0, 0L, H1 ê 2, 1 ê2, 1 ê2, 1 ê 2L, and H0, 1 ê 2, g ê2, G ê2L,
where g = G-1  = G - 1 = (-1+è!!!5 )/2. Notice that in each pair, such as Ie3 + e4  

è!!!5 M , only one of the e j  is nonzero, remind-
ing us that the hypericosahedron is really a 4-D object even though we can now define this object in terms of icosians that
are expressed in the much larger R8  euclidean real space. 

So the quaternion’s dual role allows us to identify the 120 group operations of the icosahedron with the 120 vertices of
the hypericosahedron expressed both in R4  and in R8 , essentially telescoping from 3-D rotational operations all the way to
their  representations  in  an  8-D  space.  These  special  120  icosians  are  to  be  considered  as  special  octonions,  8-tuples  of
rational numbers which, with respect to a particular norm, form part of a special lattice in R8 . 

The two other subgroups are next. The 24 quaternions of the binary tetrahedral group [3,3,2] are contained already in the
above 120 icosians. So we are  left with accommodating the  binary octahedral  group [4,3,2]  into the same icosian format.
We need 48 special  quaternions for its 48 operations,  the 24 quaternions defining the vertices of the 4-D object known as
the 24-cell contained already in the hypericosahedron above and another 24 quaternions for the reciprocal 24-cell. The 120
unit quaternions reciprocal to the ones above will meet this requirement as well as define an equivalent set for the reciprocal
hypericosahedron, and this second set of 120 octonions also forms part of a special lattice in R8 .  Together, these two lattice
parts of 120 icosians in each combine to form the 240 octonions of the famous E8  lattice in R8 , well known for being the
densest lattice packing of spheres in 8-D.  
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The two other subgroups are next. The 24 quaternions of the binary tetrahedral group [3,3,2] are contained already in the
above 120 icosians. So we are  left with accommodating the  binary octahedral  group [4,3,2]  into the same icosian format.
We need 48 special  quaternions for its 48 operations,  the 24 quaternions defining the vertices of the 4-D object known as
the 24-cell contained already in the hypericosahedron above and another 24 quaternions for the reciprocal 24-cell. The 120
unit quaternions reciprocal to the ones above will meet this requirement as well as define an equivalent set for the reciprocal
hypericosahedron, and this second set of 120 octonions also forms part of a special lattice in R8 .  Together, these two lattice
parts of 120 icosians in each combine to form the 240 octonions of the famous E8  lattice in R8 , well known for being the
densest lattice packing of spheres in 8-D.  

Recall that  the  three binary rotation  groups above are  assigned to the  lepton families  because,  as  subgroups of  the SM
gauge group, they predict  the the correct physical  properties of  lepton states,  including the correct  mass ratios.  Therefore,
the lepton states span only the 3-D real subspace R3  of the unitary plane. That is why leptons are color neutral and do not
participate in the color interaction, which requires the ability to undergo 4-D rotations. 

So how do I  accommodate the  quark states in the icosian picture?  The quark states in the SM span the whole 4-D real
space, i.e., the whole unitary plane, and I defined them to be the basis states of the 4-D finite binary rotational subgroups of
the SM gauge group. But free quarks in spacetime do not exist because they are confined according to QCD, forming the
colorless  quark-antiquark,  three-quark,  or  three-antiquark  combinations  called  hadrons.  Mathematically,  these  colorless
hadron states span the 3-D subspace only, so their resultant discrete symmetry group must be isomorphic to one of the three
binary rotational subgroups we have just considered. So the icosians enumerated above account for all the lepton states and
for all the quark states as hadronic combinations. 

V. Discrete spacetime

Linear  transformations  in  discrete  spacetime  are  described  with  quaternions  for  discrete  rotations  and  discrete  Lorentz
boosts.  Before  considering  these  discrete  transformations,  however,  I  discuss  the  continuous  transformations  of  the
‘heavenly  sphere’  as  a  useful  mathematical  construct  before  reducing  the  symmetry  for  discrete  transformations  in  a
discrete spacetime. 

The continuous Lorentz group SO(3,1) contains all the rotations and Lorentz boosts, both continuous and discrete, for the
4-D continuous spacetime with the Minkowski metric. Its operations are quaternions because there exists the isomorphism 

(4)SOH3, 1L = PSL H2, !L.
The  group  PSL H2, !L  consists  of  unit  quaternions  and  is  the  quotient  group  SLH2, !L /Z  formed  by  its  center  Z,  those
elements of SLH2, !L  which commute with all the rest of the group. Its 2 x 2 matrix representation has complex numbers as
entries.  

The continuous  Lorentz  transformations (as  well  as  the  spatial  rotations)  operate on the  ‘heavenly sphere’(Penrose  and
Rindler, 1987),  i.e., the famous Riemann sphere formed by augmenting the complex plane C by the‘point at infinity’. The
Riemann sphere is also the space of  states of  a spin-1/2 particle. For  the Lorentz  transformations in spacetime, if you are
located at  the  center  of  this  ‘heavenly  sphere’ so  that the  light  rays  from stars  each pass  through unique  points  on a  unit
celestial sphere surrounding you, then the Lorentz boost is a conformal transformation of the star locations. The constella-
tions will look distorted because the apparent lengths of  the lines connecting the stars  will change but the angles between
these connecting lines will remain the same.

These conformal transformations are called fractional linear transformations, or Möbius transformations, of the Riemann
sphere, expressed by the general form (Jones and Singerman, 1987) 

(5)w #
aw + b
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
gw + d

,

with a, b, g, and d complex, and ad-bg ≠ 0. The 2 x 2 matrix representation for transformation of a spinor v as the map v #
Mv is 

(6)M = K a b
g d

O.
Thus, M is the spinor representation of the Lorentz transformation. M acts on a vector A = vv†  via A # MAM†  (Manogue
and Dray, 1993). All these reltionships are tied together by the group isomorphisms in continuous 4-D spacetime

(7)SOH3, 1L = Möbius group = PSL H2, !L.
Discrete  spacetime  has  discrete  Lorentz  transformations,  not  continuous  ones.  These  discrete  rotations  and  discrete

Lorentz transformations are contained already in SO(3,1), and they tesselate the Riemann sphere. That is, they form regular
polygons on its surface that correspond to the discrete symmetries of  the binary tetrahedral,  binary octahedral,  and binary
icosahedral  rotation  groups  [3,3,2],  [4,3,2],  and  [5,3,2],  the  same  groups  I  used  in  the  internal  symmetry  space  for  the
discrete  symmetries.  Therefore,  the  240  quaternions  defined  previously  are  required  also  for  the  discrete  rotations  and
discrete  Lorentz  transformations  in  the  discrete  4-D  spacetime.  Again,  there  are  the  same  240  icosian  connections  to
octonions in R8  to form a second E8 lattice.
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Discrete  spacetime  has  discrete  Lorentz  transformations,  not  continuous  ones.  These  discrete  rotations  and  discrete
Lorentz transformations are contained already in SO(3,1), and they tesselate the Riemann sphere. That is, they form regular
polygons on its surface that correspond to the discrete symmetries of  the binary tetrahedral,  binary octahedral,  and binary
icosahedral  rotation  groups  [3,3,2],  [4,3,2],  and  [5,3,2],  the  same  groups  I  used  in  the  internal  symmetry  space  for  the
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discrete  Lorentz  transformations  in  the  discrete  4-D  spacetime.  Again,  there  are  the  same  240  icosian  connections  to
octonions in R8  to form a second E8 lattice.

Thus,  the  Lorentz  group  SO(3,1)  with  its  linear  transformations  in  a  continuous  4-D  spacetime,  when  reduced  to  its
discrete  transformations  in  a  4-D  discrete  spacetime,  is  connected  mathematically  by  icosians  to  the  E8  lattice  in  R8 ,
telescoping the transformations from a  smaller discrete spacetime to a larger one.  Hence all  linear transformations for the
particles in a  4-D discrete  spacetime have  become represented by  240 discrete  transformations in the  8-D discrete space-
time.  

VI. New spacetime

The  discrete  transformations  in  the  4-D  discrete  internal  symmetry  space  and  in  the  4-D  discrete  spacetime  are  each
represented by an E8 lattice in the 8-D space R8 . The finite group of the discrete symmetries of the E8  lattice is the Weyl
group E8 ,  not  to  be  confused  with  the  continuous  exceptional  Lie  group  E8 .  Thus,  the  Weyl  E8  is  a  finite  subgroup of
SO(8), the continuous group of all rotations of the unit sphere in R8  with determinant unity. In this section I show how the
two Weyl E8  groups combine to form a bigger group that operates in a discrete spacetime, and then in the next section I
suggest a simple physical model for fundamental particles that would fit the geometry. 

I have now two sets of 240 icosians each forming E8 lattices in R8 ,  each obeying the symmetry operations of the finite
group Weyl E8 . Each finite group of octonions acts as rotations and as vectors in R8 . I identify their direct product as the
elements of a discrete subgroup of the continuous group PSL(2,"), where " represents all the unit octonions. That is, if all
the unit  octonions in each were present,  not  just  the subset of unit  octonions that form the E8  lattice,  their direct  product
group would be the continuous group of 2 x 2 matrices in which all matrix entries are unit octonions. So the spinors in R8
are octonions. 

The 8-D result is analogous to the 4-D result but different. Recall that in the 4-D case, one has PSL(2, !), the group of 2
x 2 matrices with complex numbers as entries, with PSL(2,!) = SO(3,1), the Lorentz group in 4-D spacetime. Here in 8-D
one has a surprise, for the final combined spacetime is bigger, being isomorphic to a 10-dimensional spacetime instead of 8-
dimensional spacetime because

(8)PSLH2, "L = SOH9, 1L,
the Lorentz group in 10-D spacetime. 

Applied to the discrete case, the combined group is the discrete subgroup

(9)discrete PSLH2, "L = discrete SOH9, 1L,
that is, the discrete Lorentz group in discrete 10-D spacetime. The same results, expressed in terms of the Weyl E8  groups,
is  

(10)Weyl E8 x Weyl E8 = ' Weyl' SOH9, 1L,
where ‘Weyl’ SO(9,1) is defined by the direct product on the left.

Working in reverse,  the discrete  10-D spacetime divides  into two parts as  a 4-D discrete spacetime plus  a 4-D discrete
internal symmetry space. There are two surprises in this result: (1) combining a discrete 4-D internal symmetry space with a
discrete 4-D spacetime creates a discrete 10-D spacetime, not a discrete 8-D spacetime, and (2) a continuous 10-D space-
time,  when  ‘discretized’,  is  not  required  to  partition  into  a  4-D  spacetime  plus  a  6-D  ‘curled  up’  space  as  proposed  in
superstring theory.

DiscreteST4a.nb 5



VII. Physical model

My 1994 paper proposed that leptons have the symmetries of the 3-D regular polyhedral groups and that quarks have the
symmetries of the 4-D regular polytope groups, these groups being subgroups of the SM gauge group. The analysis hinted
that the internal symmetry space could be the discrete 4-D space considered above. Now that I have combined this discrete
internal symmetry space with a discrete  4-D spacetime to achieve mathematically a discrete 10-D spacetime, the question
arises: Are the leptons and quarks 3-D and 4-D objects physically, or are they something else, perhaps 8-D or 10-D objects?

In order to answer this question I need to formulate a reasonable physical model of fundamental particles in this discrete
spacetime environment.  The  simplest  mathematical  viewpoint  is  that  discrete  spacetime is  composed of  identical entities,
call them nodes, that have no measureable physical properties until they collectively distort spacetime to form a fundamen-
tal particle such as the electron, for example. The collection of nodes and its distortion of the surrounding spacetime exhibit
the  discrete  symmetry  of  the  appropriate  finite  binary  rotation  group  for  the  specific  particle.  For  example,  the  electron
family has the discrete symmetry of the binary tetrahedral group and the electron is one of its two possible orthogonal basis
states.  So  the  distortion  for  the  collection  of  nodes  called  the  electron  will  exhibit  the  discrete  symmetries  of  its  [3,3,2]
group as all of its physical properties emerge for this specific collection and did not exist beforehand. Simultaneously, the
positron forms in the conjugate space. 

One  can  begin  with  a  regular  lattice  of  nodes  in  both  the  normal  unitary  plane  and  in  its  conjugate  unitary  plane,  or
consider the equivalent R4  spaces, and then imagine that a spacetime distortion appears in both to form a particle-antiparti-
cle pair. Mathematically, one begins with an isotropic vector, also called a zero length vector, which is orthogonal to itself,
that gets divided into two unit spinors corresponding to the creation of the particle-antiparticle pair. No conservations laws
are  violated  because  their  quantum  numbers  are  opposite  and  the  sum of  the  total  mass  energy  plus  their  total  potential
energy is zero.  The spacetime distortion that is the particle and its ‘field’ mathematically brings the nodes closer together
locally with a corresponding adjustment  to the node spacing all  the way out to infinite distance, all  the while keeping the
appropriate discrete  rotational symmetry intact. The gravitational  interaction associated with this discrete symmetry there-
fore extends to infinite distance.

This model of particle creation must treat leptons as 3-D objects and quarks as 4-D objects in a discrete 4-D spacetime.
There are no isolated quarks, for they immediately form 3-D objects called hadrons. These lepton states and hadron states
are described by quaternions of  the form w + x i + y j + z k ,  so these 3-D objects ‘live’  in the three imaginary dimensions,
and  the  4th  dimension  can  be  called  time.  Therefore,  leptons  and  hadrons  each  experience  the  ‘passage  of  time’,  while
indiviual quarks do not have this freedom until they form hadrons.

If this physical model is a reasonable approximation to describing the world of particles, why are superstring researchers
working in 10-dimensions or more? Because one desires a single symmetry group that includes both the group of spacetime
transformations of particles and the group of internal symmetries for the particle interactions. At the Planck scale, if one has
a  continuous  group,  then  the  smallest  dimensional  continuous  spacetime  one  can  use  is  10-D  in  order  to  have  a  viable
Lagrangian. Reducing this 10-D spacetime to the low energy regime of the SM in 4-D spacetime, its 10-D spacetime has
been postulated to divide into 4-D spacetime plus an additional 6-dimensional ‘curled up’ space in which to accommodate
the SM. But this approach using continuous groups to connect back to the SM has proven difficult, although some signifi-
cant advances have been achieved.

The analysis presented above for combining the two discrete Weyl E8  groups shows that the combined group operates in
10-dimensional discrete spacetime with all the group operations being discrete. No separate ‘curled up’ space is required at
the low energy limit corresponding to a distance scale of about 10-23  meters or larger. The discreteness at the Planck scale
and  the  ‘hidden’  discreteness  postulated  for  all  larger  distance  scales  is  the  mathematical  feature  that  permits  the  direct
unique connection through icosians from the high energy world to the familiar low energy world of the SM. 
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VIII. Further mathematical connections

The  mathematical  connections  of  these  binary  polyhedral  groups  to  number  theory,  geometry,  and  algebra  are  too
numerous  to  list  in  this  short  article.  In  fact,  if  one  were  to  choose  groups  in  mathematics  upon  which  to  construct  the
symmetries of the universe, one couldn’t choose a better set, for “… in a very profound way, the finite groups of symme-
tries in 3-space ‘see’ the simple Lie groups (and hence literally Lie theory) in all dimensions.” (Kostant, 1984). I provide a
brief survey of a few important connections here and will discuss more of them in detail in a future article. 

The continuous  group PSL(2,!)  defines  a  torus,  as  does PSL(2,").  In discrete  PSL(2,!)  and discrete PSL(2,")  for  the
discrete spacetime cases, there are special symmetry points on each torus corresponding to the elements of the finite binary
polyhedral  groups.  An  important  mathematical  property  of  the  binary  polyhedral  groups  is  their  connection  to  elliptic
modular functions and the famous j-invariant function, which has integer coefficients in its series expansion related to the
largest of the finite simple groups called the Monster.

 The  binary  tetrahedral,  octahedral  and  icosahedral  rotation  groups  are  the  finite  groups  of  Mobius  transformations
PSL(2,  Z3 ),  PSL(2,  Z4 ),  and PSL(2,  Z5 ),  respectively, where  Zn denotes integers  mod (n).  PSL(2,  Zn )  is  often called the
modular  group  G(n).  PSL(2,  Zn )  =  SL(2,  Zn )/{±I},  so  these  three  binary  polyhedral  groups  (along  with  the  cyclic  and
dihedral groups) are the finite modular subgroups of PSL( 2, !) and are also discrete subgroups of PSL(2, #). PSL(2, Zn ) is
simple in only three cases: n = 5, 7, 11. And these three cases are the Platonic groups again: A5  and its subgroup A4 , S4 ,
and A5 , respectively (Kostant, 1995).

An important mathematical property for physics is that our binary polyhedral groups, the G(n), are generated by the two
transformations  

(11)X : t # -1 ê t Y : t # t + 1,

with  t  being  the  lattice  parameter for  the  plane associated with forming the  tesselations of  the  toroidal  Riemann surface.
The  j-invariant  function  j(t)  of  elliptic  modular  functions  exhibits  this  transformation  behavior.  Consequently,  functions
describing the physical properties of the fundamental leptons and quarks will have these same transformation properties. So
here is where the duality theorems of M-theory, such as the S duality relating the theory at physical coupling g to coupling
at 1/g, arise naturally from mathematical properties of the finite binary polyhedral groups.  

Octonions and the triality connection for spinors and vectors in R8  are related to the fundamental interactions. In 8-D, the
fundamental  matrix  representations both  for left-  and right-handed  spinors  and for  vectors  are  the same dimension,  8  x 8
(Baez,  2001), leading to many interesting  mathematical properties.  For  example,  an  electron represented by a  left-handed
octonionic spinor interacting with a W+  boson represented by an octonionic vector becomes an electron neutrino, again an
octonionic spinor. Geometrically, this interaction looks like three E8  lattices combining momentarily to form the famous 24-
dimensional Leech lattice!

By using a discrete spacetime, Nature has established a universe  based upon fundamental mathematics for fundamental
physics principles. I expect that all physical constants will be shown to arise from fundamental mathematical relationships,
dictating one universe with unique constant values.  

IX. Experimental tests

There  is  no  direct  test  yet  devised  for  discrete  spacetime.  However,  the  discrete  internal  symmetry  space  approach  I
introduced in my 1994 article dictates a fourth quark family with a b' quark at about 80 GeV and a t’ quark at about 2600
GeV. The production of this b’ quark with the detection of its decay to a b quark and a high energy photon seems to be the
only attainable empirical test for discreteness. Its appearance in collider decays would be an enormously important event in
particle  physics,  verifying  that  the  internal  symmetry  space  is  discrete  and  strongly  suggesting  that  the  "surrounding"
spacetime is discrete. 

However,  the  b’  quark  has  remain  hidden  among  the  collision  debris  at  Fermilab  because  its  flavor  changing  neutral
current (FCNC) decay channel has a very low probability compared to all the other particle decays in this energy regime. At
present, this b’ quark decay may even be confused with the decay of the Higgs boson, should such a particle exist, until all
the quantum numbers are established. The t’ quark at around 2600 GeV has too great a mass to have been produced directly
at Fermilab. 
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However,  the  b’  quark  has  remain  hidden  among  the  collision  debris  at  Fermilab  because  its  flavor  changing  neutral
current (FCNC) decay channel has a very low probability compared to all the other particle decays in this energy regime. At
present, this b’ quark decay may even be confused with the decay of the Higgs boson, should such a particle exist, until all
the quantum numbers are established. The t’ quark at around 2600 GeV has too great a mass to have been produced directly
at Fermilab. 

I expect the production of b’ quarks at the Large Hadron Collider in a few years to be the acid test for discreteness and to
verify the close connection of fundamental physics to the mathematical properties of the finite simple groups.
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