Discrete Rotational Subgroups of the Standard Model dictate Family Symmetries and Masses

Franklin Potter

Sciencegems.com Huntington Beach, California USA

Frank Potter (Sciencegems.com) • Discrete Rotational Subgroups DISCRETE '08 2/21

<u>Finite Rotational Group Approach</u>

from 1994 & 2006 F. Potter articles

IF: b' quark detected in LHC @ $\sim 80 \text{ GeV}$

THEN:

- t' quark @ ~ 2600 GeV
- Fits within realm of Standard Model which acts like a "cover"

Most likely the bigger picture is ...

- Spacetime is discrete at Planck scale
- Discrete symmetries <u>dictate</u> fundamental physics
- "God had *no* choice in the creation of the world!"

1996 DØ Search for FCNC $b' \rightarrow b + \gamma$ and $b' \rightarrow b + gluon$

<u>hep-ex-9611021</u> Integrated luminosity is 93 pb⁻¹.

Conclusion:

"There is a slight, but not statistically significant, excess of data over background."

"... $H_T \ge 1.6 \text{ m}_{b'}$, where H_T is defined as the scalar sum of the transverse energies (E_T 's) of the photons, jets, and any b-tagging muons in the event."

Overview

Symmetry Breaking to Finite Rotation Groups

Flavor symmetry breaking \rightarrow binary finite rotational subgroups of SU(2) leptons in R³: <3,3,2>, <4,3,2>, <5,3,2> quarks in R⁴: <3,3,3>, <4,3,3>, <3,4,3>, <5,3,3>

'Duplication' of families explained

EW symmetry breaking \rightarrow finite rotational subgroup of SU(2)_L x U(1)_Y <5,3,2>_{normal} x <5,3,2>_{reciprocal}

• No Higgs needed!

3 Lepton Families ⇔ **3-D binary polyhedral groups**

Lepton states span R³, a subspace of R⁴ \simeq C² \simeq Q

Group	Order	Flavor	Mass	Ν
			(MeV)	
<3,3,2>	24	е	0.51	1
		ν_{e}	~0	
<4,3,2>	48	μ	105.7	108
		$ u_{\mu}$	~0	
<5,3,2>	120	τ	1776	1728
		$\nu_{ au}$	~0	

4 Quark Families ⇔ 4-D binary polytope groups

Quark states span R⁴, a 'subspace' of R⁴ \simeq C² \simeq Q

Group	Order	Flavor	Mass	N	Predic	tion
			(GeV)		(Ge	V)
<3,3,3>	120	u	0.004	1/4?	0.38	
		d	0.007			0.011
<4,3,3>	384	С	1.5	1	1.5	
		S	0.2			0.046
<3,4,3>	1152	t	165	108	160	
		b	5			5
<5,3,3>	14400	t'	?	1728	2600	
		b'	?			80

Geometric Visions

Electroweak connections

 $R^4 \simeq C^2 \simeq Q$: Work in unitary plane C^2 for EW flavor states

- 1) LH doublets from LH screw transformations
- 2) RH singlets from RH screw transformations
- 3) Clifford algebra: Normal unitary plane C^2 &

Conjugate unitary plane C'²

4) $SU(2) \times I: \rightarrow gauge$ equivalence \rightarrow mass positive for antiparticles

n.b. $U(1)_{Y}$ does same as I?

Invariant FROG functions ...

 $R^4 \simeq C^2 \simeq Q$: Work in unitary plane C^2 for EW flavor states

Group	Invariant Ratio			
<3,3,2>	$\frac{w_1}{w_2} = \frac{\left(z_1^4 - 2 \pm \sqrt{3} \ z_1^2 \ z_2^2 + z_2^4\right)^3}{\left(z_1^4 + 2 \pm \sqrt{3} \ z_1^2 \ z_2^2 + z_2^4\right)^3}$			
<4,3,2>	$\frac{w_1}{w_2} = \frac{\left(z_1^8 + 14 \ z_1^4 \ z_2^4 + z_2^8\right)^3}{108 \ z_1^4 \ z_2^4} \left(z_1^4 - z_2^4\right)^4}$			
<5,3,2>	$\frac{w_1}{w_2} = \frac{-\left\{\left(z_1^{20} + z_2^{20}\right) + 228 \left(z_1^{15} z_2^5 - z_1^5 z_2^{15}\right) - 494 z_1^{10} z_2^{10}\right\}^3}{1728 \left\{z_1 z_2 \left(z_1^{10} + 11 z_1^5 z_2^5 - z_2^{10}\right)\right\}^5}$			

In polynomial basis:

- Each lepton group has 2 *independent* polynomials w_1 and w_2 in C^2
- Ratio w_1/w_2 invariant under all linear fractional transformations
- 1-to-1 mapping from z-sphere to w-sphere requires the N's
- N from syzygy among the 3 invariant polynomials for each group

j-invariant and mass ratios $J(\tau) = \frac{1}{1728} \left[q^{-1} + \sum_{n=1}^{\infty} c(n) q^n \right]$ see T. Gannon http://arxiv.org/pdf/math/0109067v1 $f(\tau) = \frac{a\tau + b}{c\tau + d}$ $f(\tau) a rational function of J(\tau)$

F. Klein (1884) pointed out that

N w₁/w₂ = J(
$$\tau$$
), $\tau \rightarrow \tau + 1$ and $\tau \rightarrow -1/\tau$: PSL(2, \mathbb{Z})

the absolute invariant $J(\tau)$ of elliptic modular functions being expressed in terms of a modulus τ , the ratio of two periods on the lattice. Define $q = \exp(2\pi i \tau)$, with the c(n) all integers related to the Monster group!

- 1) $J(\tau)$ has a simple pole at $q = 0 \rightarrow$ Cauchy residue theorem, etc.
- 2) N ratios \Rightarrow Mass ratios
- 3) Mass is invariant under linear fractional transformations
- 4) Quark N values same because groups are related in C^2

Quark Color possibility ...

 $R^4 \simeq C^2 \simeq Q$: Work in R^4 for color states

- Rotations in R⁴ occur simultaneously in 2 orthogonal planes
- 3 pairs: red = [wx, yz], green = [xy, zw], blue = [yw, xz]
- Red quark state:

$(\cos \alpha)$	$\sin \alpha$	(0 0)
$-\sin \alpha$	$\cos \alpha$)	(0 0)
(0 0) (co	$\beta \sin \beta$ sin β
) (-s	$\sin\beta \cos\beta$

- 8 special rotations = 8 gluons [agrees with SU(3) gens.]
- Exact color symmetry
- no-rotation combinations = hadrons, i.e., qqq,qq-bar,3q-bar

13/21

should be discrete rotations at Planck scale

Lepton & Quark Quick Review

- 1) Lepton & Quark subgroups of $SU'(2) = SU(2) \times I$
- 2) Finite binary rotational groups in 3-D and 4-D
- 3) 3 lepton families & 4 quark families
- 4) LH doublets & RH singlets for weak interaction
- 5) Odd parity particles in C^2 ; Even parity antiparticles in C'^2
- 6) Triangle anomalies? Only applies for point particles?
- 7) All the math handled by unit quaternions q = w+xi+yj+zk
- 8) Leptons in (i,j,k) [with w for *time* coordinate?]
- 9) Quarks 4-D \rightarrow non-existence in 3+1 spacetime \rightarrow confinement
- 10) Quarks must combine 2-fold or 3-fold to make 3-D hadrons

Some interesting consequences ...

- Particle antiparticle asymmetry due to CP violation via CKM4 because >10¹³ increase in Jarlskog imvariant (see W.-S. Hou http://arxiv.org/pdf/0810.3396v2)
- Muon g 2 theoretical value approaches measured value?
- Reason for more than the 1st family of leptons & quarks
- Fundamental mathematics dictates fundamental physics
- Eliminates 'nesting' of more levels within levels because lepton and quark properties 'emerge' from discrete space lattice which has no measurable property

Assumptions for unification:

- Internal symmetry space is discrete and 4-D (consider Riemann sphere)
- Spacetime is discrete and 4-D as 3 + 1 (see Penrose's 'heavenly' sphere)
- Operations in the two spaces are independent even though they are 'carved' from the same discrete space
- Finite rotation groups required for both

 $<5,3,2>_{normal} x <5,3,2>_{reciprocal} \Rightarrow (240 \text{ special quaternions} \rightarrow icosians)$

Telescoping from 4-D to 8-D space with icosians

Icosians have the form

$$q_i = (e_1 + e_2\sqrt{5}) + (e_3 + e_4\sqrt{5})i + (e_5 + e_6\sqrt{5})j + (e_7 + e_8\sqrt{5})k$$

where the e_j are special rational numbers so that the 120 icosians are permutations of

17/21

 $(\pm 1,0,0,0), (\pm 1/2,\pm 1/2,\pm 1/2,\pm 1/2), (0,\pm 1/2,\pm g/2,\pm G/2)$ with $g = G^{-1} = G^{-1} = (-1 + \sqrt{5})/2$.

n.b. in each pair only one of e_i is nonzero \Rightarrow really 4-D

Telescoping from 4-D to 8-D space with icosians

- 240 icosians/octonions make E_8 lattice in R^8 from discrete SM
- 240 icosians/octonions make E_8 lattice in R^8 from Lorentz 'boost'
- Weyl E_8 the finite group of discrete symmetries of E_8 lattice leads to: Weyl E_8 x Weyl E_8 = "Weyl" SO(9,1)

The Surprise: 10-D *discrete* spacetime breaks down into 4-D *discrete* spacetime + 4-D *discrete* internal symmetry space!

Unique connection !

In 4-D: PSL(2,C) = SO(3,1) In 8-D: PSL(2,O) = SO(9,1)

Overview again:

Summary

20/21

- Standard Model "covers" finite rotation groups really well
- Symmetry breaking to finite groups
- Leptons & Quarks in 3-D & 4-D subspaces
- Quark confinement \rightarrow hadron combinations for 3-D
- Mass ratios related to j-invariant of modular functions
- Implies discrete spacetime at Planck scale
- Unique $4-D \rightarrow 8-D$ via icosians
- Weyl $E_8 \ge \text{Weyl } E_8 \cong \text{discrete SO}(9,1)$
- Emergent physical properties no more nesting!
- Possible explanation for particle-antiparticle asymmetry, muon g-2

Where is the b' quark?

Gracias, Valencia!

1994 article:
 "Geometrical Basis for the Standard Model"
 International Journal of Theoretical Physics, Vol. 33 (1994), pp. 279-305,

online: http://www.sciencegems.com/gbsm.html

2006 article:
 "Unification of Interactions in Discrete Spacetime"

online: http://www.ptep-online.com/index_files/2006/PP-04-01.PDF

 DISCRETE '08 presentation slides online: http://www.sciencegems.com/DISCRETE08.PDF